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Abstract

The kinetic collection equation (KCE) has been widely used to describe the evolution
of the average droplet spectrum due to the collection process that leads to the devel-
opment of precipitation in warm clouds. This deterministic, integro-differential equation
only has analytic solution for very simple kernels. For more realistic kernels, the KCE5

needs to be integrated numerically. In this study, the validity time of the KCE for the
hydrodynamic kernel is estimated by a direct comparison of Monte Carlo simulations
with numerical solutions of the KCE. The simulation results show that when the largest
droplet becomes separated from the smooth spectrum, the total mass calculated from
the numerical solution of the KCE is not conserved and, thus, the KCE is no longer10

valid. This result confirms the fact that for realistic kernels appropriate for precipita-
tion development within warm clouds, the KCE can only be applied to the continuous
portion of the mass distribution.

1 Introduction

One of the most important mechanisms for the formation of rain is the collision and15

coalescence of smaller droplets into larger ones. This process can be described by the
integro-differential kinetic collection equation (KCE) or stochastic collection equation,
which in discrete form is expressed as (Pruppacher and Klett, 1997):

∂N(i ,t)
∂t

=
1
2

i−1∑
j=1

K (i − j,j )N(i − j )N(j )−N(i )
∞∑
j=1

K (i ,j )N(j ) (1)

where N(i ,t) is the total number of droplets with mass xi as a function of time. In20

Eq. (1), the time rate of change of the average number of droplets with mass xi is
determined as the difference between two terms: the first term describes the average
rate of production of droplets of mass xi due to coalescence between pairs of drops
whose masses add up to mass xi , and the second term describes the average rate of
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depletion of droplets with mass xi due to their collisions and coalescence with other
droplets.

In real life, the collision-coalescence is a stochastic process but the KCE is a de-
terministic equation. For several successive realizations of the stochastic collection
process (given set of probabilities and an initial distribution N(i ,0)), we would expect to5

obtain slightly different outcomes for the resulting droplet spectra. However, since Eq.
1 is deterministic, it can produce only one distribution once the collection kernel and
the initial distribution N(i ,0) are specified, and its solution is an average spectrum.

The average spectrum obtained from Eq. (1), and the ensemble average obtained
from different realizations of the stochastic collection process, are different. Bayewitz et10

al. (1974) showed that the solution of the KCE and the expected values calculated from
the stochastic equation are equal only if the covariances are omitted from the proba-
bilistic model. Valioulis and List (1984) compared the numerical solution of the KCE
with averages calculated from different realizations of the stochastic process obtained
from a Monte Carlo simulation for Brownian diffusion, a fluid shear and a differential15

sedimentation collision kernel. They showed that the solution of KCE matched well
the true stochastic averages from the Monte Carlo simulation provided that the total
number of particles was large.

Furthermore, the KCE assumes that the number of droplets N(i ,t) of mass xi , is
a continuous variable. In the case of runaway growth, when a single droplet, much20

larger than the second largest droplet, becomes detached from the continuous part of
the distribution, such assumption is no longer valid. At some point in the evolution of
the mass spectrum there is a transition from a continuous one to one with a continuous
distribution plus a massive runaway droplet. After the runaway growth occurs, the total
mass (refered to as the liquid water content) is no longer conserved by the KCE and the25

averages obtained from the deterministic differential Eq. 1 will differ from the expected
values obtained from the stochastic collection process.

Wetherill (1990) concluded that the KCE only models the continuous part of the
spectrum. Since no such particle is taken into account by the KCE, some matter es-
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capes from the system and the total mass calculated from the KCE decreases with
time. Alfonso et al. (2008) simulated the evolution of a droplet spectrum assuming a
kernel that was proportional to the product of the masses of the colliding droplets. The
mass of the largest (runaway droplet) was estimated using a Monte Carlo algorithm,
and compared with the runaway droplet mass obtained by subtracting the mass of the5

continuous spectrum (obtained from the analytical solution of the KCE) from the initial
mass of the system, resulting in very good agreement. As the largest droplet contin-
ues to grow by accretion of smaller droplets; the mass (or liquid water content) of the
continuous spectrum predicted by the KCE further decreases.

Analytical expressions for the validity time of the KCE only exists for very simple10

kernels, such as constant, the sum of the masses, B(xj+xj ) the product of the masses
C(xi×xj ) and their combination (e.g. polynomials). There are no analytical solutions of
the KCE when more realistic kernels are considered. As the KCE is generally taken as
the governing equation to model stochastic growth in cloud models, it is very important
to estimate the validity time of the KCE for realistic kernels relevant to cloud physics.15

In Alfonso et al. (2008), the numerical criteria suggested by Inaba et al. (1999), to
calculate the validity time for the KCE was compared with the analytical results obtained
by Drake (1972) and Tanaka and Nakazawa (1994), with good agreement. Inaba et
al. (1999) proposed that the stochastic property of the system becomes distinct around
the beginning of runaway growth. At that point, the ratio of the standard deviation for20

the largest particle mass over all the realizations to the averaged value from all the
realizations, reaches a maximum.

The main goal of this study is to demonstrate that the numerical criteria suggested
by Inaba et al. (1999) can be used to estimate the validity time of the KCE for realistic
kernels relevant for the development of precipitation within warm clouds, by comparing25

the numerical solutions of the KCE with results from Monte Carlo simulations.
The paper is organized as follows: the next section includes overview of previous

results obtained for the product kernel. In Sect. 3, we validate the numerical algorithm
to solve the KCE and compare the numerical solutions with analytical ones available in
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the literature. The validation of the numerical criteria suggested by Inaba et al. (1999)
for the case of the hydrodynamic kernel is presented in Sect. 4. Finally, in Sect. 5 we
discuss the results and possible implications for cloud physics modeling.

2 An overview of previous results

Drake (1972) calculated the analytical solutions of the KCE for polynomials of the form5

K (xi ,xj )=C(xi×xj ). The time evolution of the second moment (with respect to the
droplet distribution), M2(t), is given by:

M2(t)=
M2(t0)

1−CM2(t0)t
(2)

For the discrete case M2 is defined as:

M2(t)=
Nd∑
i=1

x2
i N(i ,t) (3)10

From Eq (2), it is clear that M2 is undefined when

τ =
[
CM2(t0)

]−1
(4)

The time t= τ, when the deterministic KCE predicts a divergence of M2 and a decrease
of the first moment, M1(total mass or liquid water content) is called the gel point. The
decrease of the total mass M1 after the gel point for a kernel proportional to the product15

of the masses, K (xi ,xj )=C(xi×xj ), is obtained from the analytical solution:

N(i ,t)=N0
(iT )i−1

iΓ(i +1)
exp(−iT ) (5a)

T =CN0v
2
0 t (5b)
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derived by Scott (1968) for a monodisperse initial condition. In Eq. (5a, b), N0 and
v0 correspond to the initial number and volume of droplets, respectively. We sim-
ulate a cloud volume equal to 1 cm3, containing 100 droplets (N0) of 14 µm in ra-
dius (v0 =1.1494×10−8 cm3). The value proposed by Long (1974) was assumed for
C=5.49×1010 cm3 g−2 s−1, then Eq. (4) leads to τ =1379 s (with M2(t0)=x2

0N0). This5

value of the breakdown time, can be compared with the time when the total mass (or
liquid water content)

M1(t)=
∞∑
i=1

x(i )N(i ,t) (6)

with N(i ,t) calculated from (5a, b) starts to decrease. Figure 1 shows that the total
mass is no longer conserved after 1300 s, in agreement with the value of τ =1379 s10

obtained from Eq. (4).
The validity time obtained from (4) can be confronted with the estimation suggested

by Inaba et al. (1999), and obtained by using a statistical code for modeling planetary
accretion. They calculated the ratio of the standard deviation for the largest particle
mass over all the realizations, to the average value evaluated from different realizations15

of the stochastic algorithm:

ML1,S =STD(ML1)
/
ML1. (7)

The standard deviation (STD(ML1)) for the mass of the largest droplet is calculated for
each time by using the expression:

STD(ML1)=

√√√√√ 1
Nr

 Nr∑
i=1

(
M i

L1−ML1

)2

 (8)20
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where ML1 is the ensemble mean of the mass of the largest droplet over all the real-
izations given by:

ML1 =
1
Nr

Nr∑
i=1

M i
L1 (9)

here Nr is the number of realizations of the Monte Carlo algorithm and M i
L1 is the

largest droplet for each realization. Inaba et al. (1999) found that ML1,S was maximum5

in the vicinity of ML1

/
M2/3

T =1(where MT is the total mass of the system). This is

consistent with the results of Tanaka and Nakazawa (1994), who demonstrated that for
a kernel proportional to the product of the masses, the KCE is valid until the stage when

a particle with a mass comparable to or larger than M2/3
T appears. As hypothesized by

Inaba et al. (1999), this behavior of ML1,S=STD(ML1)
/
ML1 indicates that the stochastic10

property becomes distinct when the runaway growth begins.
In Alfonso et al. (2008), the maximum of Eq. (7) was estimated from Monte Carlo sim-

ulations for the product kernel and compared with the values calculated from Eq. (4).
The stochastic collection calculation was performed using the Monte Carlo method
of Gillespie (1976), with the species accounting formalism proposed by Laurenzi et15

al. (2002). As can be observed in Fig. 2, in the vicinity of ML1

/
M2/3

T =1, the ratio

STD(ML1)
/
ML1 increases and reach a maximum at τ =1335 s, very close to the ana-

lytical estimate (1379 s) obtained from Eq. (4).
These arguments raise the question about the applicability of the statistics described

by Eq. (7), to estimate the validity time for realistic kernels relevant to cloud physics.20

3 Numerical integration of the KCE and comparison with analytical solutions

In order to validate the statistics (7) for physically realistic kernels, the KCE needs to
be integrated numerically, and the solution obtained from the deterministic equation
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(1) compared with the averages calculated from the stochastic Monte Carlo algorithm.
The numerical integration of equation (1) was performed using the Adams-Bashfort-
Moulton predictor-corrector method (Alfonso et al., 2009). For the finite difference
scheme, droplet mass in the numerical grid is expressed as multiples of the mass
of the initial 14µm monomer droplet. In order to check the performance of the finite dif-5

ference method, the KCE was integrated numerically with the monodisperse initial con-
dition N(1,0)=100 cm−3 for the product kernel K(x,y)=Cxy (C=5.49×1010cm3g−2s−1),
and the numerical results compared with the analytical solutions of the size distribution.
Figure 3 shows the comparison of analytical and numerical solutions of the size dis-
tributions after 1000 and 1300 s, highlighting the very good correspondence between10

them.
When gelation occurs, mass conservation is expected to break down in a finite time,

there exists a Tg,called gelation time such that (which is equal to τ for the product
kernel)

M1(t)≡M1(0) fort < Tg and M1(t)<M1(0) for t > Tg (10)15

Simultaneously, a sudden growth of the second moment is to be expected (see Eq. 2).
The first and second moments of the mass distribution were calculated from Eqs. (3)
and (6), respectively, from the numerical solution of the KCE, to check whether the pro-
posed numerical scheme provides a good estimate of the exact gelation time. Figure 4
displays the results for the time evolution of the liquid water content (first moment),20

indicating that it is no longer conserved after around t=1300 s, in agreement with the
analytical value of the breakdown time obtained from Eq. (4). There is a sudden growth
of the second moment near the breakdown time, confirming the expected “blow-up” be-
havior of M2(t) (see Eq. 2).
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4 Estimation of the validity time of the KCE for the hydrodynamic kernel

The development of precipitation in warm clouds is typically modeled by the collisions
and coalescence between droplets, using a hydrodynamic kernel that takes into ac-
count the fact that droplets with different masses (m and m

′
and corresponding radii,

r and r
′
) have different settling velocities, which are functions of their masses. Fur-5

thermore, droplets with different radii (r and r
′
), will collide according with a varying

efficiency of collision (E (r,r
′
)). Such hydrodynamic kernel has the form:

K (m,m
′
)=π

(
r+r

′)2∣∣∣V (m)−V (m
′
)
∣∣∣E (r,r

′
) (11)

where V (m) and V (m
′
) are the terminal velocities of droplets with masses m and m

′

respectively, and the values of the collision efficiencies E (r,r
′
) were taken from Hall10

(1980).
In the first of two simulations performed for the hydrodynamic kernel we consider a

system corresponding to a cloud volume of 1 cm3 and a bidisperse droplet distribution:
50 droplets of 14 µm in radius, and another 50 droplets of 17.6 µm in radius. We have
calculated the behavior of the ratio ML1,S (Eq. 7) evaluated from 1000 realizations of15

the Monte Carlo algorithm, and we have solved the KCE with a finite difference scheme
to calculate the time evolution of the total liquid water content. Figure 6 shows that the
liquid water content (or total mass) of the system from the integration of the KCE is no
longer conserved after 800 s. This time is very close to the time when the statistics
ML1,S determined from the Monte Carlo realizations, reaches its maximum (850 s).20

This result confirms the fact that total mass calculated assuming a continuous droplet
distribution starts to decrease around the time when the runaway droplet appears.

For the total droplet concentration, the Z-test was implemented to check whether the
solution obtained from the deterministic KCE and the averages over 1000 realizations
of the Monte Carlo method are equal. The null hypothesis would be H0:〈N〉=N, where25

〈N〉is the true stochastic average calculated using the Monte Carlo method and N
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is the average concentration calculated from the KCE. The results of the test of the
hypothesis are displayed in Fig. 7. As expected, at a 5% significance level, the null
hypothesis H0:〈N〉=N, is rejected after the time when the statistic MLS,1 reaches its
maximum (around 800 s)

In a second simulation, the initial number of droplets was set equal to 2005

(N(1;0)=100 and N(2;0)=100). The time evolution of the total liquid water content
and the statistics (6) for this case are displayed in Fig. 8. Again there is a good cor-
respondence between the time of the ML1,S maximum (430 s) and the gelation time
obtained from the numerical solution of the KCE (415 s).

The remarkable fact is that in Figs. 6 and 8, the 2 curves displayed in each fig-10

ure were obtained independently from the numerical solution of the deterministic KCE
(Eq. 1) and from the average over 1000 realizations of the Monte Carlo process, re-
spectively. The results clearly indicate that the statistics (7) can be used as a good indi-
cator of the validity time (gelation time) of the KCE when realistic kernels are used. This
is an important issue since the KCE is generally considered as the governing equation15

for stochastic collection growth. The results displayed in Figs. 6 and 8 also confirm
the breakdown of the KCE for the hydrodynamic kernel. In view of these problems, we
propose that the statistics (7) can be used to test the validity of the numerical methods
used to solve the KCE in numerical cloud models, since the non-conservation of mass
is an intrinsic property of the gelling-kernels after the runaway droplet is formed, and20

not a problem of the numerical algorithms used to integrate the KCE.
The results of the simulations presented here support the conclusion that the validity

time depends on the initial spectrum and the type of collision kernel considered. For
the bidisperse initial conditions used in this work, the validity time for the KCE with the
hydrodynamic kernel decreases as the total concentration increases (a factor of two25

increase in concentration leads to a decrease from 850 to 415 s in the validity time)
Malyshkin and Goldman (2000) showed a similar result, but for the simpler multiplica-
tive kernels K(x,y)=C(xy)α.
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5 Discussion and conclusions

In this paper, we evaluate the applicability of the ratio ML1,S=STD(ML1)
/
ML1 for the

largest droplet determined from realizations of the Monte Carlo method, to calculate
the validity time of the KCE for realistic kernels relevant to cloud physics. This evalua-
tion was carried out by a direct comparison with numerical solutions of the deterministic5

KCE. The total mass calculated from the numerical solution of the KCE starts to de-
crease at the moment in time when the runaway droplet forms, and the statistics ML1,S
obtained from Monte Carlo simulations reaches its maximum.

For the bidisperse initial conditions and a realistic hydrodynamic kernel considered
here, the validity time decreases as the initial total droplet concentration increases, in10

agreement with the results obtained in other modeling studies with much simpler ker-
nels. We confirm the fact that the KCE only describes the continuous droplet spectrum
(Wetherill, 1990), and that a transfer of mass occurs from the continuous spectrum to
the runaway droplet resulting in a decrease of the total mass predicted by the KCE af-
ter the maximum of ML1,S=STD(ML1)

/
ML1 is reached. The concentration of droplets15

when the runaway droplet forms can be as large as 183 cm−3 (see Fig. 9), which is far
larger than the threshold value of 100 cm−3 obtained by Valioulis and List (1984) in an
early study of stochastic completeness of the KCE.

The numerical criterion from the Monte Carlo realizations, of a maximum in the ra-
tio ML1,S=STD(ML1)

/
ML1 can also be useful to check the precision of the numerical20

methods to solve the KCE, since the non-conservation of mass, after the runaway
droplet is formed, is an intrinsic property of the KCE (which only describes the contin-
uum spectrum). Then, for a valid numerical scheme to solve the KCE, we aim to detect
the occurrence of gelation: the decrease of the total mass after the runaway droplet is
formed, together with a sudden growth of the second moment of the distribution (Eq. 3).25

The results of our study are relevant to cloud modeling, since they can be used to
check the reliability of the numerical methods implemented to solve the KCE, and to
have estimates of the validity times of the KCE for the initial conditions under consider-
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 Figure 1. Time evolution of the liquid water content (first moment of the distribution) for the product kernel (K(x,y)=Cxy, C=5.49×1010 cm3 g-2 s-1), calculated from the analytical solution of the KCE.      
Fig. 1. Time evolution of the liquid water content (first moment of the distribution) for the product
kernel (K(x,y)=Cxy, C=5.49×1010 cm3 g−2 s−1), calculated from the analytical solution of the
KCE.
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Fig. 2. The ratio STD(ML1)/ML1 (defined in Eq. 7) as a function of time, for the product kernel
K(x,y)=Cxy, (C=5.49×1010 cm3 g−2 s−1). Note that STD(ML1)/ML1 reaches a maximum when
the runaway droplet appears.
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  Figure 3. Size distributions obtained from analytical solution of the KCE for the product kernel K(x,y)=Cxy, (C=5.49×1010 cm3 g-2 s-1), versus size distributions from numerical solution for two times (t=1000, 1300 sec).       
Fig. 3. Size distributions obtained from analytical solution of the KCE for the product kernel
K(x,y)=Cxy, (C=5.49×1010 cm3 g−2 s−1), versus size distributions from numerical solution for
two times (t=1000, 1300 s).
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 Figure 4. Time evolution of the liquid water content (first moment of the distribution) for the product kernel (K(x,y)=Cxy, C=5.49×1010 cm3 g-2 s-1), calculated from the numerical solution of the KCE.       
Fig. 4. Time evolution of the liquid water content (first moment of the distribution) for the product
kernel (K(x,y)=Cxy, C=5.49×1010 cm3 g−2 s−1), calculated from the numerical solution of the
KCE.
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(K(x,y)=Cxy ), calculated from the numerical solution of the KCE.
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  Figure 6. Time evolution of total liquid water content calculated from the numerical solution of the KCE for the hydrodynamic kernel (dashed line) and the statistics 1 1( )L LSTD M M  (solid line) estimated from the Monte Carlo algorithm. The simulations were performed for the hydrodynamic kernel with a bidisperse initial condition (1;0) 50N =  and (2;0) 50N = .       
Fig. 6. Time evolution of total liquid water content calculated from the numerical solution of the
KCE for the hydrodynamic kernel (dashed line) and the statistics STD(ML1)

/
ML1 (solid line) es-

timated from the Monte Carlo algorithm. The simulations were performed for the hydrodynamic
kernel with a bidisperse initial condition N(1;0)=50 and N(2;0)=50.

6237

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/10/6219/2010/acpd-10-6219-2010-print.pdf
http://www.atmos-chem-phys-discuss.net/10/6219/2010/acpd-10-6219-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
10, 6219–6240, 2010

The validity of the
kinetic collection
equation revisited

L. Alfonso et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

 20 

 

0 400 800 1200 1600 2000
TIME (SEC)

0

0.5

1

1.5

2

2.5

S
T

D
(M

L1
)/

M
L1

0

0.2

0.4

0.6

0.8

1

Z
-t

es
t

STD(ML1)/ML1

Z-test results
0: H0 can not be rejected
1: H0 is rejected    Figure 7. Time evolution of the statistics 1 1( )L LSTD M M  (thick solid line) estimated for 1000 realizations of the Monte Carlo algorithm and the results of the Z-test (think solid line with crosses). The simulations were performed for the hydrodynamic kernel with a bidisperse initial condition (1;0) 50N =  and (2;0) 50N = .       

Fig. 7. Time evolution of the statistics STD(ML1)
/
ML1 (thick solid line) estimated for 1000

realizations of the Monte Carlo algorithm and the results of the Z-test (think solid line with
crosses). The simulations were performed for the hydrodynamic kernel with a bidisperse initial
condition N(1;0)=50 and N(2;0)=50.
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 Figure 8. Same as Fig. 6 but with the initial condition (1;0) 100N =  and (2;0) 100N = .     Fig. 8. Same as Fig. 6 but with the initial condition N(1;0)=100 and N(2;0)=100.
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Fig. 9. Evolution of the total concentration calculated from the numerical solution of the KCE for
the hydrodynamic kernel with bidisperse initial conditions. The initial total number of droplets is
200 per cm3.
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